博阿滕跳舞【视频】量子大神陆朝阳:颠覆世界观的量子力学实验-量子科学

作品分类:全部文章 2020-08-13

【视频】量子大神陆朝阳:颠覆世界观的量子力学实验-量子科学






量子力学是描述物质微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。
19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hf为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且跟"辐射能量与频率无关,由振幅确定"的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。

量子大神陆朝阳
爱因斯坦于1905年提出了光量子说。1914年,美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。
1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定性(按经典理论,原子中电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差确定,即频率法则。这样夺命枪火,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铪的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史上是空前的。
由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。量子力学的几率解释等都做出了贡献。
1923年4月美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。
光不仅仅是电磁波侠宋,也是一种具有能量动量的粒子破费特。1924年美籍奥地利物理学家泡利发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中子、夸克等)都适用,构成了量子统计力学———费米统计的基点。为解释光谱线的精细结构与反常塞曼效应,泡利建议对于原于中的电子轨道态,除了已有的与经典力学量(能量、角动量及其分量)对应的三个量子数之外应引进第四个量子数。这个量子数后来称为“自旋”,是表述基本粒子一种内在性质的物理量。
1924年,法国物理学家德布罗意提出了表达波粒二象性的爱因斯坦———德布罗意关系:E=hV,p=h/入,将表征粒子性的物理量能量、动量与表征波性的频率、波长通过一个常数h相等。
1925年,德国物理学家海森伯和玻尔,建立了量子理论第一个数学描述———矩阵力学。1926年,奥地利科学家提出了描述物质波连续时空演化的偏微分方程———薛定谔方程,给出了量子论的另一个数学描述——波动力学。1948年全志a31,费曼创立了量子力学的路径积分形式。
量子力学在高速、微观的现象范围内具有普遍适用的意义。它是现代物理学基础之一,在现代科学技术中的表面物理、半导体物理、凝聚态物理、粒子物理、低温超导物理、量子化学以及分子生物学等学科的发展中,都有重要的理论意义。量子力学的产生和发展标志着人类认识自然实现了从宏观世界向微观世界的重大飞跃。
与经典物理学的界限
1923年,尼尔斯·玻尔提出了对应原理,认为量子数(尤其是粒子数)高到一定的极限后的量子系统,可以很精确地被经典理论描述。这个原理的背景是,事实上,许多宏观系统,可以非常精确地被经典理论,如经典力学和电磁学来描写。因此一般认为在非常“大”的系统中,量子力学的特性,会逐渐退化到经典物理的特性,两者并不相抵触。因此,对应原理是建立一个有效的量子力学模型的重要辅助工具小辣椒双核。量子力学的数学基础是非常广泛的,它仅要求状态空间是希尔伯特空间,其可观察量是线性的算符。
但是,它并没有规定在实际情况下3377事件,哪一种希尔伯特空间、哪些算符应该被选择。因此,在实际情况下,必须选择相应的希尔伯特空间和算符来描写一个特定的量子系统。而对应原理则是做出这个选择的一个重要辅助工具。这个原理要求量子力学所做出的预言,在越来越大的系统中,逐渐近似经典理论的预言。这个大系统的极限,被称为“经典极限”或者“对应极限”。因此可以使用启发法的手段法尔梅,来建立一个量子力学的模型,而这个模型的极限,就是相应的经典物理学的模型。
与狭义相对论的结合
量子力学在其发展初期,没有顾及到狭义相对论。比如说,在使用谐振子模型的时候,特别使用了一个非相对论的谐振子。在早期,物理学家试图将量子力学与狭义相对论联系到一起,包括使用相应的克莱因-高登方程,或者狄拉克方程,来取代薛定谔方程。这些方程虽然在描写许多现象时已经很成功,但它们还有缺陷,尤其是它们无法描写相对论状态下,粒子的产生与消灭。通过量子场论的发展,产生了真正的相对论量子理论。量子场论不但将可观察量如能量或者动量量子化了,而且将媒介相互作用的场量子化了忠勇小状元。第一个完整的量子场论是量子电动力学,它可以完整地描写电磁相互作用。
一般在描写电磁系统时,不需要完整的量子场论。一个比较简单的模型,是将带电荷的粒子,当作一个处于经典电磁场中的量子力学物体。卢驭龙这个手段从量子力学的一开始瓦片头,就已经被使用了。比如说,氢原子的电子状态,可以近似地使用经典的1/r电压场来计算。但是,在电磁场中的量子起伏起一个重要作用的情况下,(比如带电粒子发射一颗光子)这个近似方法就失效了。
强弱相互作用
强相互作用的量子场论是量子色动力学,这个理论描述原子核所组成的粒子(夸克和胶子)之间的相互作用。弱相互作用与电磁相互作用结合在电弱相互作用中。
万有引力
至今为止,仅仅万有引力无法使用量子力学来描述。因此,在黑洞附近扈忠汉,或者将整个宇宙作为整体来看的话,量子力学可能遇到了其适用边界。使用量子力学,或者使用广义相对论,均无法解释,一个粒子到达黑洞的奇点时的物理状况。广义相对论预言,博阿滕跳舞该粒子会被压缩到密度无限大;而量子力学则预言,由于粒子的位置无法被确定,因此,它无法达到密度无限大,而可以逃离黑洞。因此20世纪最重要的两个新的物理理论,量子力学和广义相对论互相矛盾。寻求解决这个矛盾的答案,是理论物理学的一个重要目标(量子引力)。但是至今为止,找到引力的量子理论的问题,显然非常困难。虽然,一些亚经典的近似理论有所成就,比如对霍金辐射的预言宠妻至上,但是至今为止,无法找到一个整体的量子引力的理论。这个方面的研究包括弦理论等。
好书豪礼天天送
《超级记忆术》《犹太人教子枕边书》《中华成语故事大全集》《哈佛家训》《全世界优等生都在做的2000个思维游戏》《鬼谷子的智慧》等,每套精美图书价值都在295.8元以上。
一次或一天之内购满198元,即可选择上面的精美图书一套!
下单后及时联系客服,告知您选择的赠品!
如果您选择的图书已经赠送完毕,我们将挑选一套价值295.8元以上的图书替代,请知悉!
客服微信:1186258877


意见反馈